Государственное бюджетное общеобразовательное учреждение Самарской области средняя общеобразовательная школа им.М.К. Овсянникова с. Исаклы муниципального района Исаклинский Самарской области

 Рассмотрено
 Проверено:
 Утверждено приказом:

 на заседании МО
 зам. директора по ВР
 №163-9-ОД

 Протокол № 1
 Е.Н. Моисеева
 Е.Н. Нестерова

 «28» августа 2025 г.
 «29» августа 2025 г.
 «29» августа 2025 г.

Рабочая программа курса внеурочной деятельности «Профильные смены технической направленности»

для 6-8 классов

основное общее образование

срок реализации рабочей программы –1 год

Направление: ВД, направленная на организационное обеспечение учебной деятельности, осуществление педагогической поддержки социализации обучающихся

Форма организации: профильные смены

Разработал: учитель технологии Моторин И.М.

с.Исаклы 2025-2026 учебный год

ПОЯСНИТЕЛЬНАЯ ЗАПИСКА

Программа внеурочной деятельности «Профильные смены технической направленности» является программой технической направленности. Техническое мощный знаний, творчество инструмент синтеза закладывающий прочные основы системного мышления. Таким образом, инженерное творчество и лабораторные исследования — многогранная деятельность, которая должна стать составной частью повседневной жизни каждого обучающегося.

Актуальность программы заключается в том, что в настоящее время в Самарской области наблюдается повышенный интерес и необходимость в развитии новых технологий, электроники, механики и программирования.

Успехи страны в XXI веке определяют не природные ресурсы, а уровень интеллектуального потенциала, который определяется уровнем самых передовых на сегодняшний день технологий. Уникальность образовательной робототехники заключается в возможности объединить конструирование и программирование в одном курсе, что способствует интегрированию преподавания информатики, математики, физики, черчения, естественных наук с развитием инженерного мышления, через техническое творчество.

Отличительные особенности программы.

Программа разбита на 4 раздела (модуля) и рассчитана на 34 часа, которые проводятся в течение 9 дней -4 дня по 4 часа в период осенних каникул, и 3 дня по 3 часа и 2 дня по 4 часа - в период весенних каникул.

Каждый раздел обучения представлен как этап работы связанный с конструированием, программированием, практической задачей.

Содержание программы ориентирует обучающихся на постоянное взаимодействие друг с другом и преподавателем, решение практических (конструкторских) проблем осуществляется методом проб и ошибок и требует постоянного улучшения и перестройки роботизированных моделей для оптимального решения поставленной практической задачи.

Также программа ориентирует обучающихся на самостоятельное обучение, с использованием полученных знаний в рамках практической деятельности.

Программа дает возможность самостоятельного решения классической практической задачи для достижения максимального результата.

Программа предназначена для детей от 12 до 14 лет.

Так как программа разделена на модули и предполагает большое количество практической работы, предполагается формирование мини-групп (по 2 человека в каждой) для достижения максимального результата.

По причине наличия в программе завершающего четвертого модуля, ориентированного на реализацию собственного проекта, предполагается выход на участие с собственным проектом в конференциях и профильных мероприятиях всех уровней.

Объем и срок освоения программы.

Срок освоения программы – 9 дней – 4 дня в период осенних каникул и 5 дней – в период весенних каникул. На полное освоение программы требуется 34 часа.

Форма обучения – очная, работа в мини-группах.

Программа разработана на основе модульного подхода и предусматривает два уровня сложности: стартовый (ознакомительный) и базовый (творческий).

Первые 2 модуля (в период осенних каникул) — стартовый уровень (ознакомительный), где обучающиеся знакомятся с базовыми физическими принципами конструирования роботов и способами их программирования на базе робототехнического конструктора LEGO Mindstorm Education EV3.

Третий и четвертый модули (в период весенних каникул) — базовый, где обучающиеся знакомятся с конструктором, микроконтроллером, периферией и способами их программирования.

Цель программы: Формирование представлений о технологической культуре производства, развитие культуры труда подрастающих поколений, освоение технических и технологических знаний и умений, ознакомление обучающихся с конструированием, программированием, использованием роботизированных устройств, основными технологическими процессами современного производства, подготовка обучающихся к участию в робототехнических соревнованиях.

Задачи программы:

Образовательные:

□ форми	рование	навыков	прототипиров	ания и	констр	уирования	моделей
роботов.							
□ знаком	ство с п	ринципом	работы и кон	струиро	ванием	робототех	нических
устройстн	3;						
□ форми	рование	навыков	составления	алгори	тмов и	методов	решения
организаі	ционных	и технико	-технологичес	ких зада	ιч;		

осуществление умение написания и чтения кода, умение использовать
способы графического представления технической, технологической и
инструктивной информации;
□ формирование навыков использования общенаучных знаний по предметам
естественно-математического цикла в процессе подготовки и осуществления
технологических процессов для обоснования и аргументации
рациональности деятельности в рамках проектной деятельности;
Развивающие:
🗆 способствовать развитию творческих способностей каждого ребенка на
основе личностно-ориентированного подхода;
□ развить интерес к робототехнике и мехатронике;
□ развитие творческого потенциала и самостоятельности в рамках мини-
группы;
🗆 развитие психофизических качеств, обучающихся: память, внимание,
аналитические способности, концентрацию и т.д.
Воспитательные:
□ формирование ответственного подхода к решению задач различной
сложности;
□ формирование навыков коммуникации среди участников программы;
🗆 формирование навыков командной работы.
Принципы отбора содержания.

Образовательный процесс строится с учетом следующих принципов:

- 1. Культуросообразности и природосообразности. В программе учитываются возрастные и индивидуальные особенности детей.
- 2. Системности. Полученные знания, умения и навыки, обучающиеся системно применяют на практике, создавая проектную работу. Это позволяет знания и умения в единстве, целостности, использовать собственный замысел, что способствует самовыражению ребенка, развитию его творческого потенциала.
- 3. Комплексности и последовательности. Реализация этого принципа предполагает постепенное введение обучающихся в мир робототехники и автоматизации устройств.
- 4. Наглядности. Использование наглядности повышает внимание обучающихся, углубляет их интерес к изучаемому материалу, способствует развитию внимания, воображения, наблюдательности, мышления.

Методы обучения.

В процессе реализации программы используются различные методы обучения.

1. Методы организации и осуществления учебно-познавательной
деятельности:
□ словесные (рассказ; лекция; семинар; беседа; речевая инструкция; устное
изложение; объяснение нового материала и способов выполнения задания;
объяснение последовательности действий и содержания; обсуждение;
педагогическая оценка процесса деятельности и ее результата);
□ наглядные (показ видеоматериалов и иллюстраций, показ педагогом
приёмов исполнения, показ по образцу, демонстрация, наблюдения за
предметами и явлениями окружающего мира, рассматривание фотографий,
слайдов);
□ практически-действенные (упражнения на развитие моторики пальцев рук
(пальчиковая гимнастика, физкультминутки; воспитывающие и игровые
ситуации; ручной труд, изобразительная и художественная деятельность;
тренинги);
□ проблемно-поисковые (создание проблемной ситуации, коллективное
обсуждение, выводы);
□ методы самостоятельной работы и работы под руководством педагога;
□ информационные (беседа, рассказ, сообщение, объяснение, инструктаж,
консультирование, использование средств массовой информации литературы
и искусства, анализ различных носителей информации, в том числе
Интернет-сети, демонстрация, устный контроль и самоконтроль (беседа,
рассказ ученика, объяснение, устный опрос); практический контроль и
самоконтроль (анализ умения работать с различными художественными
материалами); Выбор метода обучения зависит от содержания занятий,
уровня подготовленности и опыта обучающихся. Информационно-
рецептивный метод применяется на теоретических занятиях.
Репродуктивный метод обучения используется на практических занятиях по
отработке приёмов и навыков определённого вида работ.
Для создания комфортного психологического климата на занятиях
применяются следующие педагогические приёмы: создание ситуации успеха,
моральная поддержка, одобрение, похвала, поощрение, доверие,
доброжелательно-требовательная манера.

ПЛАНИРУЕМЫЕ РЕЗУЛЬТАТЫ.

К личностным результатам освоения курса можно отнести:

- критическое отношение к информации и избирательность её восприятия;
- осмысление мотивов своих действий при выполнении заданий;
- развитие любознательности, сообразительности при выполнении разнообразных заданий проблемного и эвристического характера;
- развитие внимательности, настойчивости, целеустремленности, умения преодолевать трудности качеств весьма важных в практической деятельности любого человека;
- развитие самостоятельности суждений, независимости и нестандартности мышления;
- воспитание чувства справедливости, ответственности;
- начало профессионального самоопределения, ознакомление с миром профессий, связанных с робототехникой.

Метапредметные результаты:

Регулятивные универсальные учебные действия:

- принимать и сохранять учебную задачу;
- планировать последовательность шагов алгоритма для достижения цели;
- формировать умения ставить цель создание творческой работы, планировать достижение этой цели;
- осуществлять итоговый и пошаговый контроль по результату;
- адекватно воспринимать оценку учителя;
- различать способ и результат действия;
- вносить коррективы в действия в случае расхождения результата решения задачи на основе ее оценки и учета характера сделанных ошибок; в сотрудничестве с учителем ставить новые учебные задачи;
- проявлять познавательную инициативу в учебном сотрудничестве;
- осваивать способы решения проблем творческого характера в жизненных ситуациях;
- оценивать получающийся творческий продукт и соотносить его с изначальным замыслом, выполнять по необходимости коррекции либо продукта, либо замысла

Познавательные универсальные учебные действия:

- осуществлять поиск информации в индивидуальных информационных архивах учащегося, информационной среде образовательного учреждения, в федеральных хранилищах информационных образовательных ресурсов;

- использовать средства информационных и коммуникационных технологий для решения коммуникативных, познавательных и творческих задач;
- ориентироваться на разнообразие способов решения задач;
- осуществлять анализ объектов с выделением существенных и несущественных признаков;
- проводить сравнение, классификацию по заданным критериям; строить логические рассуждения в форме связи простых суждений об объекте; устанавливать аналогии, причинно-следственные связи;
- моделировать, преобразовывать объект из чувственной формы в модель, где выделены существенные характеристики объекта (пространственно-графическая или знаково-символическая);
- синтезировать, составлять целое из частей, в том числе самостоятельное достраивание с восполнением недостающих компонентов;
- выбирать основания и критерии для сравнения и классификации объектов;

Коммуникативные универсальные учебные действия:

- аргументировать свою точку зрения на выбор оснований и критериев при выделении признаков, сравнении и классификации объектов;
- выслушивать собеседника и вести диалог;
- признавать возможность существования различных точек зрения и права каждого иметь свою;
- планировать учебное сотрудничество с учителем и сверстниками, определять цели, функции участников, способы взаимодействия;
- осуществлять постановку вопросов инициативное сотрудничество в поиске и сборе информации;
- разрешать конфликты выявление, идентификация проблемы, поиск и оценка альтернативных способов разрешения конфликта, принятие решения и его реализация; управлять поведением партнера контроль, коррекция, оценка его действий;
- уметь с достаточной полнотой и точностью выражать свои мысли в соответствии с задачами и условиями коммуникации;
- владеть монологической и диалогической формами речи.

Предметные результаты.

По	итогам	обучения	ПО	программе	ребенок	демонстрирует	следующие
пре	дметные	результат	ы:				
□ 3	нает при	нципы пос	трое	ния констру	кции робо	ототехнических у	устройств на
осн	ове конс	груктора L	ego	Mindstorms;			
□ 3:	нает базс	вые основі	ы ал	горитмизаци	іи;		

□ правила техники безопасности при работе с электронными и
металлическими элементами;
□ умеет разрабатывать уникальные конструкции для робототехнических
задач;
🗆 обладает навыками программирования.
ОСНОВНЫЕ ФОРМЫ И ВИДЫ ДЕЯТЕЛЬНОСТИ.
В ходе реализации программы используются следующие формы и виды
деятельности:
По охвату детей: групповые, коллективные.
По характеру учебной деятельности:
□ беседы (вопросно-ответный метод активного взаимодействия педагога и
обучающихся на занятиях, используется в теоретической части занятия);
□ защита проекта (используется на творческих отчетах, фестивалях
конкурсах, как итог проделанной работы);
□ практические занятия (проводятся после изучения теоретических основ с
целью отработки практических умений и изготовления роботов);
□ наблюдение (применяется при изучении какого-либо объекта, предметов
явлений).
На занятиях создается атмосфера доброжелательности, доверия, что во
многом помогает развитию творчества и инициативы ребенка. Выполнение
творческих заданий помогает ребенку в приобретении устойчивых навыков
работы с различными материалами и инструментами. Участие детей в

выставках, фестивалях, конкурсах разных уровней является основной формой контроля усвоения программы обучения и диагностики степени освоения практических навыков ребенка.

СОДЕРЖАНИЕ ПРОГРАММЫ

Программа состоит из 4 модулей. Первые 2 модуля проводятся в период осенних каникул – стартовый уровень (ознакомительный), где базовыми обучающиеся знакомятся c физическими принципами конструирования роботов и способами их программирования на базе робототехнического конструктора LEGO Mindstorm Education EV3.

Третий и четвертый модули проводятся в период весенних каникул – базовый уровень, где обучающиеся знакомятся конструктором, микроконтроллером, периферией и способами их программирования.

Программа обучения (34 часа, 9 дней – 4 дня (16 часов) в период осенних каникул и 5 дней (18 часов) в период весенних каникул)

No	Наименование модуля	Количество часов				
п/п	Панменование модули	Всего	Теория	Практика		
1.	Основные принципы конструирования и построения робототехнических систем.	8	3	5		
2.	Построение и программирование робота LEGO Education EV3	8	2	6		
3.	Теоретические основы электротехники	9	3	6		
4.	Аппаратная часть Arduino Uno	9	3	6		
ИТОГО		34	11	23		

Модуль 1. «Основные принципы конструирования и построения робототехнических систем».

Tema 1: Основные механизмы конструктора LEGO EV3

Роботы. Виды роботов. Значение роботов в жизни человека. Основные направления применения роботов. Информация о конструкторах компании ЛЕГО, их функциональном назначении и отличии, демонстрация имеющихся наборов. Основные механические детали и датчики набора Lego Mindstorms EV3 и их назначение. Модуль EV3. Обзор, экран, кнопки управления модулем, индикатор состояния, порты.

Тема 2: Виды механических передач. Ведомая и ведущая ось, расчет передаточного отношения.

Назначения и виды механических передач. Ведомая и ведущая ось, расчет передаточного отношения. Редуктор и мультипликатор.

Тема 3: Построение механической передачи из шестеренок с различными передаточными отношениями.

Построение механической передачи из шестеренок. Ведомая и ведущая ось, расчет передаточного отношения. Редуктор и мультипликатор.

Сервомоторы EV3, их характеристики, сравнение моторов. Механика механизмов и машин. Виды соединений и их свойства.

Тема 4: Мини-проект «Построение редуктора и мультипликатора с электрическим приводом».

Работа в мини-группах (по 2 человека) по расчету и самостоятельной сборке редуктора и мультипликатора с электрическим приводом по заданному педагогом передаточному отношению. Демонстрация устройства.

Модуль 2. Построение и программирование робота LEGO Education EV3

Тема 5: Изучение среды управления и программирования. Алгоритмы.

Изучение программного обеспечения, изучение среды программирования. Сборка первого робота по инструкции и реализация алгоритмов движения. Составление простых программ на движение приводной платформы. Задачи на расчет движения на определенное расстояние, движение по кругу, по квадрату.

Тема 6: Программирование роботы с использованием различных датчиков

Датчик касания. Устройство датчика.

Практикум. Решение задач и составление программы на движение с использованием датчика касания.

Датчик цвета, режимы работы датчика. Решение задач и составление программы на движение с использованием датчика цвета.

Ультразвуковой датчик. Решение задач на движение с использованием датчика расстояния.

Тема 7: Обнаружение черты. Движение по линии

Конструирование робота для движения по линии. Составление программы для движения по линии с использованием 1 датчика цвета.

Команды собирают роботов, составляют алгоритм на движение по линии. Устраиваем соревнования на лучшее время прохождения трассы. Выявляем плюсы и минусы роботов. Корректируем программу для обеспечения точности и скорости выполнения поставленной задачи

Тема 8: Конструирование, программирование и испытание собственной модели робота.

Разработка назначения, конструкции собственных моделей роботов в группах. Программирование и испытание моделей.

Презентация собственных моделей и защита проекта.

Модуль 3. Теоретические основы электротехники

Тема 9: Электричество, закон Ома. Переменный и постоянный ток

Знакомство с понятиями электричество, закон Ома, переменный и постоянный ток.

Тема 10: Печатная и макетная платы, коммутация. Резистор, потенциометр и фоторезистор

Назначение печатных и макетных плат, принципы коммутации; изучение свойств радиоэлементов: резистор, потенциометр и фоторезистор.

Тема 11: Диоды, светодиоды, расчет резистора для светодиода

Изучение назначения и свойств радиоэлементов: диодов, светодиодов, расчет токопонижающего резистора для светодиода.

Тема 12: Основы схемотехники

Принципы построения электрических схем, соединение радиоэлементов на макетной плате. Практикум.

Тема 13: Творческое задание по схемотехнике

Построения электрических схем с использованием макетной платы по заданной принципиальной схеме.

Модуль 4: Аппаратная часть Arduino Uno

Тема 14: Знакомство с платой Arduino Uno и его основными функциями

Микроконтроллер. Установка и настройка ПО. Запуск первых программ.

Практика: Настройка микроконтроллера для работы, установка и настройка ПО, загрузка и установка драйверов, библиотек.

Тема 15: Подключение радиоэлементов к контроллеру через макетную плату

Подключение радиоэлементов к контроллеру; использования монитора последовательного порта контроллера.

Сборка учащимися элементарных электрических схем на базе контроллера Arduino UNO.

Tema 16: Знакомство со средой программирования Arduino IDE

Знакомство с языком программирования C++ в среде Arduino IDE, изучение базовых элементов языка программирования при работе с контроллером Arduino UNO, загрузка и отладка созданной программы.

Тема 17: Программирование контроллера. Моргание светодиодом.

Программирование контроллера Arduino UNO в среде Arduino IDE на языке программирования С++. Создание простых схем управления. Переменные, типы данных, функции.

Практика: сборка базовых мини-конструкций с программным управлением».

Тема 18: Мини-проект «Семафор»

Работа в мини-группах по сборке и программированию режима работы светодиодов с использованием микроконтроллера Ардуино.

Поурочное планирование курса

Раздел	Тема	Ко	л-во часо	OB	Электронные ресурсы
(модуль)		теор	практ	все	
		ия	ика	ГО	
	(Осенни	е кани	кулы)		
Основные принципы конструирования и построения	Основные механизмы конструктора LEGO EV3	1	1	2	https://yandex.ru/video/preview/14448188730525934420
робототехничес-ких систем.	Виды механических передач. Ведомая и ведущая ось, расчет передаточного отношения.	1	1	2	https://disk.yandex.ru/i/NJYw Du-3blCCIg https://disk.yandex.ru/i/WsaSy KBQA7XRIQ
	Построение механической передачи из шестеренок с различными передаточными отношениями.	1	1	2	https://disk.yandex.ru/i/WsaSy KBQA7XRIQ
	Мини-проект «Построение редуктора и мультипликатора с электрическим приводом»	0	2	2	https://disk.yandex.ru/i/8kRkS Gt3bXFEwQ
Итого по модулю			5	8	
Построение и программирова-	Изучение среды управления и	1	1	2	https://yandex.ru/video/previe w/3751607405441858359

ние робота LEGO Education EV3	программирования. Алгоритмы.				https://yandex.ru/video/preview/17074047518140908281
	Программирование роботы с использованием различных датчиков	0	2	2	https://yandex.ru/video/previe w/10354843500442384919 https://disk.yandex.ru/i/8kRkS Gt3bXFEwQ
	Обнаружение черты. Движение по линии	1	1	2	https://disk.yandex.ru/d/KJHO P12f_4wyBA
	Мини-проект» Конструирование, программирование и испытание собственной модели робота.	0	2	2	https://disk.yandex.ru/i/MjQk3 d2zq83z6w
Итого по модулю		2	6	8	
	(Весении	іе кани	кулы)		
Теоретические основы электротехники	Электричество, закон Ома. Переменный и постоянный ток	1	1	2	https://wiki.amperka.ru/
	Печатная и макетная платы, коммутация. Резистор, потенциометр и фоторезистор	0,5	1	1,5	https://wiki.amperka.ru/
	Диоды, светодиоды, расчет резистора для светодиода	0,5	1	1,5	https://wiki.amperka.ru/
	Основы схемотехники	1	1	2	https://wiki.amperka.ru/
	Творческое задание по схемотехнике	0	2	2	https://wiki.amperka.ru/
Итого по модулю			6	9	
Аппаратная часть Arduino Uno	Знакомство с платой Arduino Uno и его основными функциями	1	1	2	https://wiki.amperka.ru/
	Подключение радиоэлементов к контроллеру через макетную плату	0,5	1	1,5	https://wiki.amperka.ru/

	Знакомство со средой программирования Arduino IDE	0,5	1	1,5	https://wiki.amperka.ru/
	Программирование контроллера. Моргание светодиодом.	1	1	2	https://wiki.amperka.ru/
	Мини-проект «Семафор»	0	2	2	Мини-проект
Итого по модулю		3	6	9	
ИТОГО		11	23	34	

Материально-техническое обеспечение.

Оборудование - образовательный набор по механике, мехатронике и робототехнике, компьютер с предустановленным ПО: операционная система, Arduino IDE. Организация рабочего пространства ребенка осуществляется с использованием здоровьесберегающих технологий. В ходе занятия в обязательном порядке проводится физкультпаузы, направленные на снятие общего и локального мышечного напряжения. В содержание физкультурных минуток включаются упражнения на снятие зрительного и слухового напряжения, напряжения мышц туловища и мелких мышц кистей, на восстановление умственной работоспособности.